Core Concepts Overview
This document will help you understand the fundamental concepts and design philosophy of A2A Protocol.
Design Goals
A2A Protocol’s core objectives are:
Standardized Communication
- Unified agent communication protocol
- Standardized message format definitions
- Extensible protocol architecture
High Interoperability
- Cross-platform collaboration support
- Compatibility with multiple agent frameworks
- Unified capability description
Enterprise Features
- Secure and reliable communication
- Flexible extension mechanisms
- Comprehensive monitoring system
Basic Concepts
1. Agent
Agents are the core entities in the protocol with the following characteristics:
- Unique Identifier: Each agent has a globally unique ID
- Capability Description: Functionality described in standard format
- State Management: Maintains agent runtime state
- Lifecycle: Includes creation, startup, shutdown phases
Capability Description Example
{
"id": "chat-assistant-001",
"name": "Customer Service Assistant",
"version": "1.0.0",
"capabilities": [
{
"type": "chat",
"description": "Multi-turn dialogue support",
"inputs": ["message"],
"outputs": ["reply"]
},
{
"type": "kb-search",
"description": "Knowledge base search",
"inputs": ["query"],
"outputs": ["results"]
}
],
"metadata": {
"vendor": "google",
"model": "llm-v1",
"language": ["en", "es"]
}
}2. Task
Tasks are specific work units executed by agents:
- Task Type: Identifies how the task should be processed
- Input/Output: Defines task data formats
- Status Tracking: Records task execution progress
- Timeout Control: Manages task execution time
Task Lifecycle
graph LR
A[Created] --> B[Waiting]
B --> C[Executing]
C --> D[Completed]
C --> E[Failed]
B --> F[Cancelled]
3. Communication Model
A2A Protocol supports multiple communication modes:
Synchronous Communication
sequenceDiagram
Client->>Agent: Request
Agent->>Client: Response
Asynchronous Communication
sequenceDiagram
Client->>Agent: Submit Task
Agent-->>Client: Return Task ID
Note over Agent: Process Task
Agent->>Client: Push Result
Streaming
sequenceDiagram
Client->>Agent: Establish Connection
loop Data Stream
Agent->>Client: Send Data Chunk
end
Agent->>Client: Completion Mark
4. Message Format
All communications use a standard message format:
{
"type": "message",
"version": "2025.1",
"id": "msg-123",
"timestamp": "2025-04-12T10:30:00Z",
"source": "agent-001",
"target": "agent-002",
"payload": {
"content": "Message content",
"format": "text"
},
"metadata": {
"trace_id": "trace-123",
"priority": "normal"
}
}Architecture Design
1. Layered Architecture
A2A Protocol uses a four-layer architecture:
Transport Layer
- TCP/IP protocol
- WebSocket protocol
- HTTP/2 protocol
Message Layer
- Message encoding/decoding
- Serialization/deserialization
- Compression/decompression
Protocol Layer
- Message routing
- Flow control
- Error handling
Application Layer
- Business logic
- State management
- Plugin extensions
2. Plugin System
Extend functionality through plugins:
from a2a.plugin import Plugin
class CustomPlugin(Plugin):
def on_message(self, message):
# Process message
pass
def on_task(self, task):
# Process task
passSecurity Mechanisms
1. Authentication & Authorization
Supports multiple authentication methods:
- API key authentication
- OAuth2 authentication
- Certificate authentication
- Token authentication
2. Access Control
Based on RBAC model:
{
"role": "operator",
"permissions": [
"agent:read",
"task:create",
"task:read"
],
"resources": [
"agent-group-1/*",
"task-type-a/*"
]
}3. Data Security
- Transport encryption (TLS)
- End-to-end encryption
- Data masking
- Audit logging
Best Practices
1. Agent Design
- Single responsibility principle
- Clear capability boundaries
- Testable interfaces
- Graceful degradation
2. Error Handling
- Use standard error codes
- Provide detailed error messages
- Implement retry mechanisms
- Log error information
3. Performance Optimization
- Use connection pools
- Enable compression
- Implement local caching
- Process requests asynchronously
Advanced Concepts
1. Agent Orchestration
Define orchestration logic using DSL:
agents:
- id: parser
type: text-parser
- id: translator
type: translator
- id: formatter
type: text-formatter
workflow:
- name: process-text
steps:
- agent: parser
action: parse
- agent: translator
action: translate
- agent: formatter
action: format2. State Management
Agent state machine:
stateDiagram-v2
[*] --> Initialized
Initialized --> Ready
Ready --> Processing
Processing --> Ready
Processing --> Error
Error --> Ready
Ready --> Stopped
Stopped --> [*]
Resources
💡 Learning Tips:
- Start with basic concepts
- Practice with examples
- Explore advanced topics
- Reference best practices